Tissue-Specific Differences in the Spatial Interposition of X-Chromosome and 3R Chromosome Regions in the Malaria Mosquito Anopheles messeae Fall.
نویسندگان
چکیده
Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC) and 3R chromosomes (32D) attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.
منابع مشابه
Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus
Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, ...
متن کاملLinear and spatial organization of polytene chromosomes of the African malaria mosquito Anopheles funestus.
Anopheles funestus Giles is one of the major malaria vectors in Africa, but little is known about its genetics. Lack of a cytogenetic map characterized by regions has hindered the progress of genetic research with this important species. This study developed a cytogenetic map of An. funestus using ovarian nurse cell polytene chromosomes. We demonstrate an important application with the cytogene...
متن کاملGenome Landscape and Evolutionary Plasticity of Chromosomes in Malaria Mosquitoes
BACKGROUND Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is no...
متن کاملشرایط اقلیمی شیوع بیماری مالاریا در ایران با استفاده از سامانهی اطلاعات جغرافیایی
Background and aim: Malaria as a mosquito-borne disease is largely dependent on climatic conditions. Temperature, rainfall and relative humidity are considered as climatic factors affecting the geographical distribution of this disease. These climatic factors have definite roles not only in the growth and proliferation of the mosquito Anopheles but also in the parasite Plasmodium activity. The...
متن کاملComplete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes
Complete dosage compensation refers to hyperexpression of the entire X or Z chromosome in organisms with heterogametic sex chromosomes (XY male or ZW female) in order to compensate for having only one copy of the X or Z chromosome. Recent analyses suggest that complete dosage compensation, as in Drosophila melanogaster, may not be the norm. There has been no systematic study focusing on dosage ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015